is manifested more in bending of the aryl ring as opposed to distortion of $\mathrm{C}-\mathrm{S}-\mathrm{C}$ bond angles than is the case in related paracyclophanes.

We would like to thank Jane Bae for technical assistance in the preparation and crystal growth of compound (3). Acknowledgment is made to the donors of the Petroleum Research Fund, administered by the American Chemical Society, for support of this research. CJC would like to thank Professor Gene B. Carpenter of Brown University for helpful discussions regarding the space group assignment and Professor Paul G. Williard of Brown University for gracious assistance with data collection.

References

Allinger, N. L., Walter, T. J. \& Newton, M. G. (1974). J. Am. Chem. Soc. 96, 4588-4597.
Chung, J. \& Rosenfeld, S. M. (1983). J. Org. Chem. 48, 387-388.
Desper, J. M., Powell, D. R. \& Gellman, S. H. (1990). J. Am. Chem. Soc. 112, 4321-4324.
Dewar, M. J. S. \& Thel, W. J. (1977). J. Am. Chem. Soc. 99, 4899-4907.
Guinand, G., Marsau, P., Bouas, L. H., Castellan, A., Desvergne, J. P. \& Riffaud, M. H. (1986). Acta Cryst. C42, 835-838.
Halvorson, A., Foxman, B., Keehn, P. \& Rosenfeld, S. (1983). Unpublished observations.
Keehn, P. M. (1983). Cyclophanes, Vol. 1, edited by P. M. Keehn \& S. M. Rosenfeld, ch. 3, pp. 155-156, 166. New York: Academic Press.

Main, P., Hull, S. E., Lessinger, L., Germain, G., Declercq, J.-P. \& Woolfson, M. M. (1978). MULTAN78. A System of Computer Programs for the Automatic Solution of Crystal Structures from Diffraction Data. Univs. of York, England, and Louvain, Belgium.
Mitchell, R. H. (1983). Cyclophanes, Vol. 1, edited by P. M. Keehn \& S. M. Rosenfeld, ch. 4. New York: Academic Press.
Motherwell, W. D. S. \& Clegg, W. (1978). PLUTO. Program for plotting molecular and crystal structures. Univ. of Cambridge, England.
Nardelli, M. (1983). J. Comput. Chem. 7, 95-98.
Pfisterer, V. H. \& Ziegler, M. L. (1983). Acta Cryst. C39, 372-375.
Rosenfeld, S. M. \& Choe, K. A. (1983). Cyclophanes, Vol. 1, edited by P. M. Keehn \& S. M. Rosenfeld, ch. 5. New York: Academic Press.
Rosenfeld, S. M. \& Sanford, E. M. (1987). Tetrahedron Lett. 28, 4775-4778.
Rosenfeld, S. M., Shedlow, A. M., Kirwin, J. M. \& Amaral, C. A. (1990). J. Org. Chem. 55, 1356-1359.

Serena Software (1989). PCMODEL and PCDISPLAY. Molecular modelling software. Serena Software, Bloomington, Indiana 47402-3076, USA.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Stewart, J. J. P. (1983). MOPAC. Version 4.0. QCPE Bull. 7, 455.

Toyoda, T., Kasai, N. \& Misumi, S. (1985). Bull. Chem. Soc. Jpn, 58, 2348-2356.
Toyoda, T. \& Misumi, S. (1978). Tetrahedron Lett. pp. 14791482.

Vögtle, F. \& Koo Tze Mew, P. (1978). Angew. Chem. Int. Ed. Engl. 17, 60-62.
Wolf, R. E., Hartman, J. R., Storey, J. M. E., Foxman, B. M. \& Cooper, S. R. (1987). J. Am. Chem. Soc. 109, 4328-4335.
Wynberg, H. \& Helder, R. (1971). Tetrahedron Lett. pp. 43174320.

Structure of 1-Amino-5-benzoyl-4-phenyl-1 H-pyrimidine-2-thione

By Mehmet Akkurt,* Ayhan Güldeste and Hüseyin Soylu \dagger
Department of Physics, Faculty of Arts and Sciences, Erciyes University, TR-38039 Kayseri, Turkey
and Behzat Altural and Emin Saripinar
Department of Chemistry, Faculty of Arts and Sciences, Erciyes University, TR-38039 Kayseri, Turkey

(Received 26 September 1989; accepted 18 July 1991)

Abstract. $\quad \mathrm{C}_{17} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{OS}, \quad M_{r}=307.38$, monoclinic, $P 2_{1} / n, a=9.712$ (3), $b=15.072$ (3), $c=10.713$ (3) \AA, $\beta=107.65(3)^{\circ}, V=1494.34 \AA^{3}, Z=4, D_{m}=1.372$, $D_{x}=1.366 \mathrm{~g} \mathrm{~cm}^{-3}, \quad$ Мо $K \alpha, \quad \lambda=0.71069 \AA, \quad \mu=$

[^0]0108-2701/92/020315-03\$03.00
$2.11 \mathrm{~cm}^{-1}, F(000)=640, T=295 \mathrm{~K}$, final $R(F)=$ 0.0417 for 2608 unique reflections. The pyrimidine ring is almost planar, the angle between the planes formed by the ring atoms $\mathrm{N} 1-\mathrm{C} 6-\mathrm{C} 5$ and $\mathrm{C} 2-\mathrm{N} 3-\mathrm{C} 4$ being 0.74°.

Introduction. Thiopyrimidines possess effective antibacterial, antifungal, antiviral, insecticidal and © 1992 International Union of Crystallography
miticidal properties (Cheng, 1969; McNair-Scott, Ulbricht, Rogers, Chu \& Rose, 1959; Sankyo Co. Ltd \& Ube Industries Ltd, 1984; Ziegler, Eder, Belegratis \& Prewedorakis, 1967; Akçamur, Altural, Sarıpınar, Kollenz, Kappe, Peters, Peters \& von Schnering, 1988; Özbey, Kendi, Akçamur, Yildirim, Elerman \& Soylu, 1991).

The furan-2,3-dione, (1), can easily be made from dibenzoylmethane and oxalyl dichloride (Akçamur, Penn, Ziegler, Sterk, Kollenz, Kappe, Peters, Peters \& von Schnering, 1986) and with the thiosemicarbazones (2) it gives a number of $1,4,5$-substituted 1 H -pyrimidine-2-thiones, (3) and (4), in moderate yields ($30-60 \%$) (see scheme). We have carried out an X-ray analysis of (5), a hydrolysis product of (3), in order to confirm the structure deduced from the IR and NMR spectra.

Table 1. Atomic coordinates and equivalent isotropic temperature factors $\left(\AA^{2} \times 10^{4}\right)$ with e.s.d.'s in parentheses
Equivalent isotropic U is defined as one third of the trace of the orthogonalized $U_{i j}$ tensor.

	x	y	z	$U_{e q}$
	x	$0.5836(1)$	$0.5118(2)$	$330(1)$
N1	$0.1210(2)$	$0.5397(2)$	$0.4088(3)$	$345(1)$
C2	$0.1508(3)$	$0.5754(2)$	$0.2877(2)$	$347(1)$
N3	$0.0947(2)$	$0.6487(2)$	$0.2683(2)$	$300(1)$
C4	$0.0159(3)$	$0.6921(2)$	$0.3718(2)$	$303(1)$
C5	$-0.0193(3)$	$0.6555(2)$	$0.4947(3)$	$341(1)$
C6	$0.0377(3)$	$0.5472(2)$	$0.6393(2)$	$447(1)$
N10	$0.1715(3)$	$0.4490(1)$	$0.4377(1)$	$511(1)$
S20	$0.2542(1)$	$0.6820(2)$	$0.1306(2)$	$339(1)$
C41	$-0.0305(3)$	$0.7705(2)$	$0.1017(3)$	$437(2)$
C42	$-0.0194(3)$	$0.7991(2)$	$-0.0286(3)$	$542(2)$
C43	$-0.0603(4)$	$0.7379(3)$	$-0.1281(3)$	$562(2)$
C44	$-0.1124(4)$	$0.6500(3)$	$-0.1002(3)$	$510(2)$
C45	$-0.1222(4)$	$0.6206(2)$	$0.0297(3)$	$394(2)$
C46	$-0.0801(3)$	$0.7751(1)$	$0.2612(2)$	$461(1)$
O50	$-0.2270(2)$	$0.7678(2)$	$0.3578(2)$	$338(1)$
C50	$-0.1212(3)$	$0.8318(2)$	$0.4681(2)$	$322(1)$
C51	$-0.0936(3)$	$0.8555(2)$	$0.5379(3)$	$455(2)$
C52	$0.0478(3)$	$0.9151(3)$	$0.6397(4)$	$608(2)$
C53	$0.0709(4)$	$0.9503(2)$	$0.6742(3)$	$591(3)$
C54	$-0.0421(4)$	$0.9272(2)$	$0.6050(3)$	$553(2)$
C55	$-0.1829(4)$	$0.8690(2)$	$0.5014(3)$	$429(2)$
C56	$-0.2081(3)$			

Table 2. Bond distances (\AA) and angles $\left({ }^{\circ}\right)$ with e.s.d.'s in parentheses

N1-C2	1.390 (3)	C45-C46	1.399 (4)
N1-C6	1.332 (3)	C46-C41	1.393 (4)
N1-N10	1.414 (3)	C5-C6	1.379 (3)
$\mathrm{C} 2-\mathrm{N} 3$	1.357 (3)	C5-C50	1.489 (4)
C2-S20	1.669 (3)	C50-O50	1.222 (3)
N3-C4	1.324 (3)	C50-C51	1.486 (4)
C4-C5	1.415 (4)	C51-C52	1.396 (4)
C4-C41	1.492 (3)	C52-C53	1.378 (4)
C41-C42	1.381 (4)	C53-C54	1.367 (5)
C42-C43	1.398 (4)	C54-C55	1.387 (5)
C43-C44	1.384 (5)	C55-C56	1.378 (4)
C44-C45	1.367 (5)	C56-C51	1.384 (4)
C6-N1-N10	117.9 (2)	C44-C45-C46	120.4 (3)
$\mathrm{N} 10-\mathrm{N} 1-\mathrm{C} 2$	119.1 (2)	C45-C46-C41	119.3 (3)
C6-N1-C2	122.8 (2)	C4-C5-C50	125.9 (2)
N1-C2-S20	120.1 (2)	C50-C5-C6	117.7 (2)
S20-C2-N3	123.1 (2)	C4-C5-C6	116.2 (2)
N1-C2-N3	116.8 (2)	C5-C6-N1	120.5 (3)
$\mathrm{C} 2-\mathrm{N} 3-\mathrm{C} 4$	121.7 (2)	C5-C50-O50	121.1 (2)
N3-C4-C41	115.0 (2)	O50-C50-C51	121.2 (2)
C41-C4-C5	123.2 (2)	C5-C50-C51	117.6 (2)
N3-C4-C5	121.8 (2)	C50-C51-C52	120.2 (2)
C4-C41-C42	121.7 (2)	C50-C51-C56	120.1 (2)
C4-C41-C46	118.2 (2)	C52-C51-C56	119.7 (3)
C42-C41-C46	120.0 (3)	C51-C52-C53	119.2 (3)
C41-C42-C43	120.2 (3)	C52-C53-C54	121.1 (3)
C42-C43-C44	119.4 (3)	C53-C54-C55	120.0 (3)
C43-C44-C45	120.7 (3)	C54-C55-C56	119.7 (3)
		C55-C56-C51	120.3 (3)

reflections with $I \geq \sigma(I)$ were considered observed. Data were corrected for Lorentz-polarization effects and absorption (North, Phillips \& Mathews, 1968) (empirical from ψ scans of four close-to-axial reflections), transmission factors: $96.81-99.95 \%$. The structure was solved by direct methods (SHELXS86; Sheldrick, 1986) and refined by full-matrix least
squares on F (SHELX76; Sheldrick, 1976) with anisotropic thermal parameters for non-H atoms. H atoms were obtained from a ΔF map and refined with a common isotropic thermal parameter ($U=$ $0.066 \AA^{2}$). 238 parameters were refined. $R=w R=$ $0.0417, w=1$. In the last cycle $(\Delta / \sigma)_{\text {max }}=0.343$. A final difference Fourier map revealed residual electron density between -0.61 and $0.35 \mathrm{e} \AA^{-3}$.

Computer programs used: Enraf-Nonius $S D P$ (B. A. Frenz \& Associates Inc., 1985) (for data reduction on a PDP11/44 computer), SHELX76 (Sheldrick, 1976), SHELXS86 (Sheldrick, 1986), ORTEPII (Johnson, 1976), HXDUA (Aytaç, Soylu \& Ülkü, 1973). Scattering factors for neutral atoms and $f^{\prime}, f^{\prime \prime}$ from International Tables for X-ray Crystallography (1974, Vol. IV).

Discussion. Final positional and thermal parameters are presented in Table 1 and bond distances and angles in Table 2.* These values are comparable with those found for similar compounds, especially those in the (3c) form (Akçamur et al., 1988). A view of the molecule and the numbering scheme are shown in Fig. 1.

Fig. 1. An ORTEP (Johnson, 1976) drawing of the title molecule with the atom-numbering scheme. The thermal ellipsoids are drawn at the 50% probability level.

The C2-S20 bond distance of 1.669 (3) \AA is a little longer than $1.61 \AA$, the distance expected for a C-S double bond (Pauling, 1960) and the N1-N10 bond distance of 1.414 (3) \AA is unexceptional (cf. 1.434 (4) \AA, Akçamur et al., 1988). In the pyrimidine ring the angle between the planes formed by the atoms $\mathrm{N} 1-\mathrm{C} 6-\mathrm{C} 5$ and $\mathrm{C} 2-\mathrm{N} 3-\mathrm{C} 4$ is 0.74°. This angle appears sensitive to the type of substituents present on N10 since in the related (3c) compound it is 5.3° (Akçamur et al., 1988) and 7.5° in 5-benz-oyl-1-[4-(dimethylamino)phenylmethyleneamino]-4-phenyl-1 H -pyrimidine-2-thione (Sarıpınar, 1990; Akkurt, Hiller, Sarıpınar, Akçamur \& Soylu, 1992).

The X-ray structural determination of (5) confirms the formula suggested on the basis of NMR and IR spectroscopy.

The authors are grateful to Professor Dr L. Randaccio, Professor Dr M. Bresnani and their colleagues at the Dipartimento di Scienze Chimiche, Universita Degli Studi di Trieste, for collecting intensity data. Our thanks are also due to Dr T . Hökelek, Department of Physics, Hacettepe University, Ankara, Turkey, for helping with the molecular drawing.

References

Akçamur, Y., Altural, B., Saripinar, E., Kollenz, G., Kappe, O., Peters, K., Peters, E. M. \& von Schnering, H. G. (1988). J. Heterocycl. Chem. 25, 1419-1422.

Akçamur, Y., Penn, G., Ziegler, E., Sterk, H., Kollenz, G., Kappe, O., Peters, K., Peters, E. M. \& von Schnering, H. G. (1986). Monatsh. Chem. 117, 231-245.

Akkurt, M., Hiller, W., Saripinar, E., Akçamur, Y. \& Soylu, H. (1992). In preparation.

Aytaç, K., Soylu, H. \& UllkÜ, D. (1973). HXDUA. A Computer Program for Bond Lengths, Bond Angles and Least-Squares Planes Calculations. Hacettepe University, Ankara, Turkey.
B. A. Frenz \& Associates Inc. (1985). SDP Structure Determination Package. College Station, Texas, USA, and Enraf-Nonius, Delft, The Netherlands.
Cheng, C. C. (1969). Prog. Med. Chem. pp. 67-70.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
McNair-Scott, D. B., Ulbricht, T. L. V., Rogers, M. L., Chu, E. \& Rose, C. (1959). Cancer Res. pp. 15-19.

North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acia Cryst. A24, 351-359.
Özbey, S., Kendi, E., Akçamur, Y., Yildirim, İ, Elerman, Y. \& Soylu, H. (1991). Acta Cryst. C47, 1105-1106.
Pauling, L. (1960). The Nature of the Chemical Bond, 3rd ed. Cornell Univ. Press.
Sankyo Co. Ltd \& Ube Industries Ltd (1984). Chem. Abstr. 101, 1109392. Japanese Patent 5936,667 [8436,667].
Saripinar, E. (1990). PhD Thesis, Erciyes Univ. Kayseri, Turkey. Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Sheldrick, G. M. (1986). SHELXS86. Program for the solution of crystal structures. Univ. of Göttingen, Germany.
Ziegler, E., Eder, M., Belegratis, C. \& Prewedorakis, E. (1967). Monatsh. Chem. 98, 2249-2253.

[^0]: * Author for correspondence.
 \dagger Present address: Department of Physics, Faculty of Arts and Sciences, Eastern Mediterranean University, G. Magusa, North Cyprus.

